1. **Course number and name:** CSCI 4210 High Performance Computing

2. **Credits and contact hours:** 3 credit, 3 contact

3. **Instructor’s or course coordinator’s name:** Ashraf Saad, PhD

4. **Textbook, title, author and year:**

 a. **Other supplemental materials:** None

5. **Specific course information**
 a. **Brief description of the content of the course (Catalog Description)**
 b. **Prerequisites:** A minimum grade of “C” in CSCI 3341 or CSCI 3232
 c. **Indicate whether a required, elective, or selected elective course in the program**
 Elective course for BS-CS.

6. **Specific goals for the course**
 a. **Specific outcomes of instruction, ex. The student will be able to explain the significance of current research about a particular topic.**

<table>
<thead>
<tr>
<th>Course Learning Outcomes</th>
<th>Student Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>understand the fundamental computing issues for high</td>
<td>1a, 1i</td>
</tr>
<tr>
<td>performance computing</td>
<td></td>
</tr>
<tr>
<td>understand and implement parallel programs using</td>
<td>1a, 1b, 1c</td>
</tr>
<tr>
<td>message passing and threads</td>
<td></td>
</tr>
<tr>
<td>evaluate the performance and speed-up factor of parallel</td>
<td>1i, 2a</td>
</tr>
<tr>
<td>algorithms</td>
<td></td>
</tr>
<tr>
<td>optimize parallel algorithms for practical applications</td>
<td>1i, 2a</td>
</tr>
</tbody>
</table>
b. Student Outcomes:
 • 1a: An ability to apply knowledge of computing and mathematics appropriate to the discipline
 • 1b: An ability to analyze a problem, and identify and define the computing requirements appropriate to its solution
 • 1c: An ability to design, implement and evaluate a computer-based system, process, component, or program to meet desired needs
 • 1f: An ability to communicate effectively with a range of audiences
 • 1g: An ability to analyze the local and global impact of computing on individuals, organizations and society, including ethical, legal, security and global policy issues
 • 1h: Recognition of the need for, and an ability to engage in, continuing professional development
 • 1i: An ability to use current techniques, skills, and tools necessary for computing practice
 • 2a: An ability to apply mathematical foundations, algorithmic principles, and computer science theory in the modeling and design of computer-based systems in a way that demonstrates comprehension of the tradeoffs involved in design choices

7. Brief list of topics to be covered
 • parallel computation
 • partitioning strategies
 • message passing
 • pipelined computations
 • synchronous computation
 • load balancing and termination detection,
 • shared memory systems
 • parallelizing algorithms (sorting, numerical, image processing, searching and optimization)
 • modern architectures (clusters, multi-core).